Skip to main content

Transmission


Dengue virus is primarily transmitted by Aedes mosquitoes, particularly A. aegypti.[2] These mosquitoes usually live between the latitudes of 35° North and 35° South below an elevation of 1,000 metres (3,300 ft).[2] They bite primarily during the day.[14] Other Aedes species that transmit the disease include A. albopictus, A. polynesiensis and A. scutellaris.[2] Humans are the primary host of the virus,[2][11] but it also circulates in nonhuman primates.[15] An infection can be acquired via a single bite.[16] A female mosquito that takes a blood meal from a person infected with dengue fever becomes itself infected with the virus in the cells lining its gut. About 8–10 days later, the virus spreads to other tissues including the mosquito's salivary glands and is subsequently released into its saliva. The virus seems to have no detrimental effect on the mosquito, which remains infected for life. Aedes aegypti prefers to lay its eggs in artificial water containers, to live in close proximity to humans, and to feed off people rather than other vertebrates.[17]

Dengue can also be transmitted via infected blood products and through organ donation.[18][19] In countries such as Singapore, where dengue is endemic, the risk is estimated to be between 1.6 and 6 per 10,000 transfusions.[20] Vertical transmission (from mother to child) during pregnancy or at birth has been reported.[21] Other person-to-person modes of transmission have also been reported, but are very unusual.

Comments

Popular posts from this blog

DENGUE FEVER , HEALTH EDUCATION , INFECTION CONTROL (ICSP) , URDU

Research

Research efforts to prevent and treat dengue include various means of vector control,[43] vaccine development, and antiviral drugs.[27] With regards to vector control, a number of novel methods have been used to reduce mosquito numbers with some success including the placement of the guppy (Poecilia reticulata) or copepods in standing water to eat the mosquito larvae.[43] There are ongoing programs working on a dengue vaccine to cover all four serotypes.[27] One of the concerns is that a vaccine could increase the risk of severe disease through antibody-dependent enhancement.[44] The ideal vaccine is safe, effective after one or two injections, covers all serotypes, does not contribute to ADE, is easily transported and stored, and is both affordable and cost-effective.[44] As of 2009, a number of vaccines were undergoing testing.[13][33][44] It is hoped that the first products will be commercially available by 2015.[27] Apart from attempts to control the spread of the Aedes mosq...

Predisposition

Severe disease is more common in babies and young children, and in contrast to many other infections it is more common in children that are relatively well nourished.[5] Women are more at risk than men.[13] Dengue can be life-threatening in people with chronic diseases such as diabetes and asthma.[13] Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin,[1] CTLA4, TGFβ,[12] DC-SIGN, and particular forms of human leukocyte antigen.[13] A common genetic abnormality in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk.[22] Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.