Skip to main content

Viral reproduction


Once inside the skin, dengue virus binds to Langerhans cells (a population of dendritic cells in the skin that identifies pathogens).[22] The virus enters the cells through binding between viral proteins and membrane proteins on the Langerhans cell, specifically the C-type lectins called DC-SIGN, mannose receptor and CLEC5A.[12] DC-SIGN, a non-specific receptor for foreign material on dendritic cells, seems to be the main point of entry.[13] The dendritic cell moves to the nearest lymph node. Meanwhile, the virus genome is replicated in membrane-bound vesicles on the cell's endoplasmic reticulum, where the cell's protein synthesis apparatus produces new viral proteins, and the viral RNA is copied. Immature virus particles are transported to the Golgi apparatus, the part of the cell where some of the proteins receive necessary sugar chains (glycoproteins). The now mature new viruses bud on the surface of the infected cell and are released by exocytosis. They are then able to enter other white blood cells, such as monocytes and macrophages.[12]

The initial reaction of infected cells is to produce interferon, a cytokine that raises a number of defenses against viral infection through the innate immune system by augmenting the production of a large group of proteins mediated by the JAK-STAT pathway. Some serotypes of dengue virus appear to have mechanisms to slow down this process. Interferon also activates the adaptive immune system, which leads to the generation of antibodies against the virus as well as T cells that directly attack any cell infected with the virus.[12] Various antibodies are generated; some bind closely to the viral proteins and target them for phagocytosis (ingestion by specialized cells and destruction), but some bind the virus less well and appear instead to deliver the virus into a part of the phagocytes where it is not destroyed but is able to replicate further.

Comments

Popular posts from this blog

DENGUE FEVER , HEALTH EDUCATION , INFECTION CONTROL (ICSP) , URDU

Research

Research efforts to prevent and treat dengue include various means of vector control,[43] vaccine development, and antiviral drugs.[27] With regards to vector control, a number of novel methods have been used to reduce mosquito numbers with some success including the placement of the guppy (Poecilia reticulata) or copepods in standing water to eat the mosquito larvae.[43] There are ongoing programs working on a dengue vaccine to cover all four serotypes.[27] One of the concerns is that a vaccine could increase the risk of severe disease through antibody-dependent enhancement.[44] The ideal vaccine is safe, effective after one or two injections, covers all serotypes, does not contribute to ADE, is easily transported and stored, and is both affordable and cost-effective.[44] As of 2009, a number of vaccines were undergoing testing.[13][33][44] It is hoped that the first products will be commercially available by 2015.[27] Apart from attempts to control the spread of the Aedes mosq...

Clinical course

The characteristic symptoms of dengue are sudden-onset fever, headache (typically located behind the eyes), muscle and joint pains, and a rash. The alternative name for dengue, "break-bone fever", comes from the associated muscle and joint pains.[1][7] The course of infection is divided into three phases: febrile, critical, and recovery.[8] The febrile phase involves high fever, often over 40 °C (104 °F), and is associated with generalized pain and a headache; this usually lasts two to seven days.[7][8] At this stage, a rash occurs in approximately 50–80% of those with symptoms.[7][9] It occurs in the first or second day of symptoms as flushed skin, or later in the course of illness (days 4–7), as a measles-like rash.[9][10] Some petechiae (small red spots that do not disappear when the skin is pressed, which are caused by broken capillaries) can appear at this point,[8] as may some mild bleeding from the mucous membranes of the mouth and nose.[5][7] The fever itself is cl...